Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

نویسندگان

  • O A Bulavchenko
  • Z S Vinokurov
  • T N Afonasenko
  • P G Tsyrul'nikov
  • S V Tsybulya
  • A A Saraev
  • V V Kaichev
چکیده

A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Carbon Nanotubes by CVD Process over Nanoparticles of Ni-Ce-Zr Mixed Oxides

Carbon nanotubes (CNTs) were prepared by the catalytic chemical vapor deposition of C2H2 at 550°C in 120 minutes using nanoparticles of Ni-Ce-Zr mixed oxides. The CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The results revealed that CNTs with diameter of about 45 nm are o...

متن کامل

Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation.

Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and xK-20Mn-Ce-Zr (x = 0, 5, 10, 20), they were characterized by XRD, SEM, TPR and BET surface area techniques. The results of soot temperature programmed oxidation (TPO) in an O2 oxidizing atmosphere ...

متن کامل

Eco-Friendly Synthesis and Characterization of Ni-Si Nanoparticles Mixed Oxides as Catalyst for

The nanoparticles of Ni–Si mixed oxides were prepared by co-precipitation method using nickel nitrate; Ni(NO3)2 6H2O and tetraethylorthosilicate (TEOS). The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and hydrogen temperature program reduction (H2-TPR). The results revealed that Ni–Si mixed oxides particles were obtained with average particle ...

متن کامل

Substitution effects on the bulk and surface properties of (Li,Ni)Mn2O4

Manganese oxides of spinel structure, LiMn2O4, Li1-xNixMn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasoundassisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd...

متن کامل

Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature

A series of Mn-Co/TiO2 catalysts were prepared by wet impregnation method and evaluated for the oxidation of NO to NO2. The effects of Co amounts and calcination temperature on NO oxidation were investigated in detail. The catalytic oxidation ability in the temperature range of 403–473 K was obviously improved by doping cobalt into Mn/TiO2. These samples were characterized by nitrogen adsorptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 35  شماره 

صفحات  -

تاریخ انتشار 2015